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Research	Topics:	
• Assessment		of		solar	and	wind	energy		resources	

• Short	and	medium-term	forecast	of	solar	and	wind	genera7on	

• Energy	and	global	clima7c	changes	

• Site-specific	measurements,	characteriza7on	and	modelling	of	solar	and	
wind	resources	
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The multidisciplinary laboratory LABREN-CCST-INPE, carries 
out research and teaching activities in energy meteorology 
and in the climate system influence on energy resources 
making use of satellite data, computational modelling and 
observational data. 



Solar	resource	assessment	

Solar energy potential 
terrain, environment, latitude…  

Data uncertainty 
   type of radiometer, operation & maintenance, 

model characteristic 

Solar variability 
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Figure 7-4. Example sky imager-based 5-minute-ahead irradiance forecasts. Location: Universtity 
of California at San Diego, November 14, 2012. Image from University of California at San Diego 

Center for Energy Research 

7.2.2 Satellite-Based Forecasts 
Forecasts of several hours ahead require observations of cloud fields in large areas. For example, 
assuming a maximum cloud velocity of 160 km/h, a region of approximately 2,000 km by 2,000 
km has to be covered to track arriving clouds 6 hours ahead. Satellite data with their broad 
coverage (see Section 4.4) are an appropriate source for these horizons. 

Cloud and irradiance information from satellite images can be derived by a variety of methods, 
as presented in Chapter 4. In principle, all of them can be applied to satellite-based irradiance 
forecasting with cloud motion vectors. There are also many approaches to derive atmospheric 
cloud motion vectors, which are commonly used in operational weather forecasting to describe 
wind fields at upper levels in the atmosphere. 

Satellite-based nowcasting schemes have been developed in recent years based on cloud motion 
vectors or sectoral cloud tracking (Hammer et al. 2003, Schroedter-Homscheidt et al. 2011). The 
satellite-based forecasting scheme from the University of Oldenburg in Germany (Lorenz, 
Heinemann, and Hammer 2004, Kühnert, Lorenz, and Heinemann 2013), described exemplarily 
here, uses images of the geostationary MSG satellites (See Chapter 4). The semiempirical 
HELIOSAT method (Hammer et al. 2003; see Chapter 4) is applied to obtain information about 
clouds and irradiance. A characteristic feature of the method is the dimensionless cloud index, 
which gives information about the cloud transmissivity. 



Solar	Energy	and	weather	



Solar	resource	
short	term	fluctua2ons	
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Fig. 4: Site-pair correlation as a function of time period and distance for sample regions in North America and 
Hawaii. Mean monthly cloud speed was estimated from satellite-derived cloud motion vectors computed for each 
data point. 

 

 

•  Solar resource varies from site to 
site 

•  Correlation between each pair of 
radiometers varies with 
integration time 

Source Perez et al., personal comunication 



Solar	resource	
long	term	fluctua2ons	

 
•  Measurements for long-term 

solar resource characterizations 
require years to complete, which 
is an unacceptable timeline for 
the rapidly emerging needs of 
solar energy applications. 

 
•  It takes many years to stabilize 

the solar irradiance for a given 
site 

•  This is an indication of the need 
to compare site-specific short 
term solar data with long term 
solar information form some 
other available regional source of 
information 

Source Gueymard and Wilkox, 2009 

1. How many years does it take before the solar radiation 
components stabilize and converge to their long-term 
value? 

2. Does the variability in annual irradiation change sig-

nificantly from one site to the other, or with climatic 
conditions? 
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Fig. 2:  Number of years needed to stabilize DNI and GHI in 
the worst-case scenario at Burns, OR. 
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Fig. 3:  Same as Fig. 2, but for Eugene, OR. 
 
The first question can be addressed in a variety of ways. 

Here, the worst-case scenario is considered, using the avail-
able long data series from the four sites in Table 1. It is as-
sumed that the long-term annual average irradiation calcu-
lated from all the available complete years of data is not 
significantly different from the “true” climatological value, 
which is not known. The percent differences between each 
annual irradiation and this long-tem value are sorted in de-

creasing order of magnitude, separately for the positive and 
negative anomalies. This specific sorting, from the worst 
years (largest anomalies) to the best years (smallest anoma-
lies) typifies the hypothetic case where, by chance, a meas-
urement station would start operating during the worst year, 
which would be followed (by chance again) by the worst of 
the remaining years, etc.  
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Fig. 4: Same as Fig. 2, but for Hermiston, OR. 
 
This process is illustrated in Figs. 2–5. It is obvious from 
these figures that GHI is almost always within ±5% of the 

long-term mean (indicated by the yellow-shaded area), 
whereas it takes many years for DNI to stabilize and reach 
the limits of this zone. The good-year and bad-year anomaly 
tracks are almost symmetrical at Eugene, but not at the other 
sites. The more pronounced bad DNI years can be explained 
by the incidence of volcanic activity (El Chichón and Pi-
natubo), which greatly affected DNI. Although these are 

historical events, similar events cannot be ruled out when 
fully considering the future solar resource. 
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Fig. 5: Same as Fig. 2, but for Golden, CO (NREL). 
 
 To address the second question above, another kind of 
analysis has been conducted, this time based on the mostly 
modeled data from the 1961–1990 NSRDB. This dataset 
conveniently spans the 30-year climatological period, and 

provides solar radiation data for 239 U.S. sites, thus cover-
ing a large range of climatic conditions. The natural vari-
ability in DNI and GHI is characterized here by their coeffi-
cient of variation (COV), i.e., the standard deviation of their 
annual anomaly divided by their 30-year climatological 
mean. It is found that the COV of DNI is much larger (2–3 
times more) than that of GHI at any given site. This cor-



Pre-feasibility phase 
Assessment of solar energy potentials in large areas 

• Using a network of radiometers 
strategically distributed over the region of 
interest followed by the application of 
data interpolation techniques. 



Pre-feasibility phase 
Assessment of solar energy potentials in large areas 

• Using a network of radiometers 
strategically distributed over the region of 
interest together with the application of 
interpolation of data 

• Using computational models to estimate 
the incident solar irradiation by means of 
empirical relationships or the solution of 
the equation of radiative transfer in the 
atmosphere 



Pre-feasibility	phase	
Large	areas	–	available	informa2on	
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• Most of the available 

information sources for 
Brazilian territory are State 
Governments initiatives 
through bidding 

• Available information are 
based on statistical 
interpolation of ground 
observations 



Pre-feasibility	phase	
Solar	energy	assessment	by	using	models	

computador 



Classification of models for solar assessment


Statistical Models

•  use empirical formulas between measures of incident irradiation 

and satellite data

•  restricted validity to the region studied




Classification of models for solar assessment


Statistical Models

•  use empirical formulas between measures of incident irradiation 

and satellite data

•  restricted validity to the region studied


Physical Models

•  Solve the equation of radiation transfer through parameterization 

of radiative processes that occur in the atmosphere

•  need for knowledge of atmospheric and environmental conditions 

for radiative processes: the optical property of the clouds and 
the profile of atmospheric constituents such as aerosols, ozone, 
water vapor and other atmospheric gases

–   




General	principle	of	satellite	models	
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BRASIL-SR Model 
 

Two steps: 
 
1)  Handling input data: 

•  Satellite data 
•  Temperature 
•  Relative humidity 
•  Surface albedo 
•  Visibility 
•  Effective cloud cover 

 
2) Atmospheric parameterizations and 
solving the radiative transfer equation 



Geostationary

satellites


Map of coverage of the Earth's surface




Space	variability	
ground	observa2ons	X	satellite	model	



Brazilian	Solar	Atlas	
model	devia/on	VS	Ground	measurements	
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Benchmark for Brasil-SR satellite model 



Site-specific	phase	
Due-	diligence	and	project	
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• Ground measurements 

• Public solarimetric stations 
and/or networks 

• Site-specific from projects 
- proprietary data 



Pyranometer 
 

Thermopile sensor  
Measures solar irradiance (W/m2) between  in 
the shortwave range of the solar spectra (0.3 - 
2.8 µm) 

1.  Solar energy is converted to electric 
current by a thermistor 

2-3.  Special glass domes to provide  
  thermal insulation of the   
  thermistor 

4.  Shield 
11. Compensating thermistor (body  
      temperature) 

       High accuracy (1% a 10%) 



Measures the direct component of solar 
irradiance in W/m2  

(0,3 and 2,8 µm) 

 

Must be guided by a Sun tracker to 

follow the direct Sun beams 

Pirheliometer 



Shading devices 
For diffuse and longwave 

measurements 

• Sun tracker 

 

• Shading ring 



Sky imager  
	

• Maps the percentage of 
cloud cover in the sky 

• Substitutes man-made 
observations (subjective 
data) 

• Images must be processed to 
provide cloud cover 
percentage 

 

   



Application sky imagers 
•  Cloud cover 
•  Derivation of luminance 
•  General weather situation 
•  Cloud type 

original Image estimated cloud cover 

•  Cloud cover 
•  Derivation of luminance 
•  General weather situation 
•  Cloud type 
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•  Cloud cover 
•  Derivation of luminance 
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•  Cloud type 

•  Cloud cover 
•  Derivation of luminance 
•  General weather situation 
•  Cloud type 

original Image estimated cloud cover 



• Is a special type of pyreliometer 

• measures the solar irradiation in 
narrow absorption bands of solar 
spectra 

 
• Must be guided by a Sun tracker 

• Used to estimate the optical 
properties of aerosols and water 
vapor in the atmospheric column 

Sun photometer 



Validação	de	modelos–	levantamento	de	incertezas	
SONDA	rede	nacional	de	coleta	de	dados	radiométricos	e	
anemométricos	

05/07/17	25 

14 sitios de coleta de dados locados estratégicamente nas 
principais zonas climáticas do país  

http://sonda.ccst.inpe.br 



Forecas/ng	of	solar	energy	resource	

Forecast	 Time	horizon	 Applica/on	 Methods	
intra-hour	 5-60 min Real-2me	dispatch	 Mostly	persistence	

Short-term	 1-12	hours	
Ramp	forecas2ng,	load-
flowing,	conges2on	
manegement	

Meteorological	models	
adjusted	by	sta2s2cal	
techniques	

Medium-term	 Days	ahead	

Load	forecas2ng,	reserve	
requirement,	market	
trading	and	conges2on	
manegement	

Metorological	models	with	
post	processing	sta2s2cal	or	
ANN	correc2ons	

Long	term	 Months	ahead	
Resource	planing,	
con2ngency	analysis,	
maintenance	planing	

Downscaling	of	climatological	
model	forecasts	

Climatological	
term	 Years	ahead	 Planning	and	climate	

change	scenarios	

Global	climate	models	
adjusted	by	regional	
meteorological	models	



Forecas/ng	of	solar	energy	resource	
ü  Ajuste de saída de modelo meteorológico (WRF) com emprego de rede neural artificial (RNA) 

ü  Treinamento da RNA realizado com dados de irradiância ou de produção local 

ü  Previsões empregam metodologias distintas para escalas de tempo distintas  

 

modelo 
radiativo 

modelo 
mesoescala 



Forecas/ng	of	solar	energy	resource	



Forecas/ng	of	solar	energy	resource	



Forecas/ng	of	solar	energy	resource	

Fig. 3. Overall Cloud Motion and Solar Irradiance Estimation Flow.

(a) (b)

Fig. 4. Filling the missing information (a) with the estimated images. The
motion vector detection after filling with the estimated image found additional
(red) motion vectors (b) near the holding arm and shadow band.

V. MOTION VECTOR REFINEMENTS

Although the real-time requirements can be satisfied by our
adopted fast cross correlation, it still needs significant improve-
ments for accurate prediction. We summarize the refinements
techniques used to improve our motion vector detection.

A. Filling

The lack of sky information leads to either no motion
vector detected, or the detected vectors falsely align with the
edges of the empty area. We adopt two different methods to
fill in the missing information. The first one is “local mean-
filling” used in the first motion detection, in which the empty
area will be filled with the local mean of neighbor areas. It
removes the majority of the spurious vectors near the holding
arm and shadow band. The second method, used in the second
motion detection, is to fill with the estimated cloud from the
first motion estimation result. Figure 4 shows before and after
filling in missing information area and in the latter we could
find more accurate motion vectors.

B. Sequential Cloud Motion Prediction

(a) Decision on displacement: 1st case.

(b) Decision on displacement: 2nd case.

Fig. 5. Cloud Motion Vector Back-tracking.

To cope with the abnormal motion vectors due to cloud
shape changes, we try to predict next g (g � 1) frame motion

vectors from h preceding frames. Since it utilizes h (h � 2)
recent frames, it is more stable compared with using only
two recent frames [6]. Our sequential cloud motion prediction
model consists of three steps: 1) back-tracking the same block
from the current frame to h+ 1 preceding frames, 2) using a
series of vector trend to build a sequential prediction model,
and 3) predicting future vectors using the sequential model.

Figure 5 shows the back-tracking step. We back-trace a
block starting at (i, j) of the current image frame It back to the
previous frame It�1 and repeat this process until h+1 previous
frames are checked. To increase the stability, we compare the
detected back-traced motion vector with the predicted one. If
the difference between these two is larger than thresholds, the
predicted motion vector is chosen as the final motion vector
(Figure 5(a)), otherwise, the detected motion vector is chosen
(Figure 5(b)) to allow local motion vector digression resulted
from smooth cloud shape changes. Iteratively using the same
method on h+1 frames, we can find h motion vectors namely
from ~v t�h

(i,j) to ~v t

(i,j) for the same block (i, j). To denote the
motion vector of block (i, j) in time t, we use ~v t instead of
~v t

(i,j) for the notational simplicity.The second step is to learn
linear prediction models.

~̂v t+1 =
hX

k=1

~w
k

· ~v t�h+k, (2)

where ~̂v t+1 is the predicted motion vector, ~v t�h+k are the
previous detected vectors, and ~w

k

are the corresponding coef-
ficients. Our goal is to minimize the following loss function:

argmin
W

{
n�1X

t=h

(
hX

k=1

~w
k

·~v t�h+k�~v t+1)2+�

hX

k=1

~w
k

· ~w
0

k

}, (3)

where n is the number of training frames and � is a regular-
ization parameter. To predict next g vectors, we sequentially
predict from ~̂v t+1 to ~̂v t+g using the following equation.

~̂v t+g =
h�g�1X

k=1

~w
k

· ~v t�h+k +
h�1X

k=h�g

~w
k

· ~̂v t�h+k. (4)

C. Wind-Field Extraction

Wind-fields are three-dimensional spatial patterns of winds
with similar wind speeds.We would like to use the spatial
patterns of winds to identify and remove spurious motion
vectors. Moreover, since we can only observe the lowest layer
of cloud, it is especially important to extract wind-field patterns
to adjust the motion detection. Our extraction algorithm relies
on three key characteristics of wind-field: frequency of motion
vectors, cosine similarity and motion vector length similarity.
Algorithm 1 describes the extraction procedures. Algorithm 2
explains how to adjust motion vectors using local and global
wind-field. Here local wind-field is extracted within local
neighborhood in a single time frame, while global wind-field
is extracted from all motion vectors during a given time t.
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Fig. 4. Filling the missing information (a) with the estimated images. The
motion vector detection after filling with the estimated image found additional
(red) motion vectors (b) near the holding arm and shadow band.
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ments for accurate prediction. We summarize the refinements
techniques used to improve our motion vector detection.
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The lack of sky information leads to either no motion
vector detected, or the detected vectors falsely align with the
edges of the empty area. We adopt two different methods to
fill in the missing information. The first one is “local mean-
filling” used in the first motion detection, in which the empty
area will be filled with the local mean of neighbor areas. It
removes the majority of the spurious vectors near the holding
arm and shadow band. The second method, used in the second
motion detection, is to fill with the estimated cloud from the
first motion estimation result. Figure 4 shows before and after
filling in missing information area and in the latter we could
find more accurate motion vectors.

B. Sequential Cloud Motion Prediction
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(b) Decision on displacement: 2nd case.

Fig. 5. Cloud Motion Vector Back-tracking.

To cope with the abnormal motion vectors due to cloud
shape changes, we try to predict next g (g � 1) frame motion

vectors from h preceding frames. Since it utilizes h (h � 2)
recent frames, it is more stable compared with using only
two recent frames [6]. Our sequential cloud motion prediction
model consists of three steps: 1) back-tracking the same block
from the current frame to h+ 1 preceding frames, 2) using a
series of vector trend to build a sequential prediction model,
and 3) predicting future vectors using the sequential model.

Figure 5 shows the back-tracking step. We back-trace a
block starting at (i, j) of the current image frame It back to the
previous frame It�1 and repeat this process until h+1 previous
frames are checked. To increase the stability, we compare the
detected back-traced motion vector with the predicted one. If
the difference between these two is larger than thresholds, the
predicted motion vector is chosen as the final motion vector
(Figure 5(a)), otherwise, the detected motion vector is chosen
(Figure 5(b)) to allow local motion vector digression resulted
from smooth cloud shape changes. Iteratively using the same
method on h+1 frames, we can find h motion vectors namely
from ~v t�h

(i,j) to ~v t

(i,j) for the same block (i, j). To denote the
motion vector of block (i, j) in time t, we use ~v t instead of
~v t

(i,j) for the notational simplicity.The second step is to learn
linear prediction models.

~̂v t+1 =
hX

k=1
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· ~v t�h+k, (2)

where ~̂v t+1 is the predicted motion vector, ~v t�h+k are the
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C. Wind-Field Extraction

Wind-fields are three-dimensional spatial patterns of winds
with similar wind speeds.We would like to use the spatial
patterns of winds to identify and remove spurious motion
vectors. Moreover, since we can only observe the lowest layer
of cloud, it is especially important to extract wind-field patterns
to adjust the motion detection. Our extraction algorithm relies
on three key characteristics of wind-field: frequency of motion
vectors, cosine similarity and motion vector length similarity.
Algorithm 1 describes the extraction procedures. Algorithm 2
explains how to adjust motion vectors using local and global
wind-field. Here local wind-field is extracted within local
neighborhood in a single time frame, while global wind-field
is extracted from all motion vectors during a given time t.

IEEE SmartGridComm 2013 Symposium - Support for Storage, Renewable Resources and Micro-grids

698

Vectorization of cloud fields 
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Major improvements: 
•  Longer time series of satellite images 17 years 

•  Improved methodology for model assimilation of 
aerosol optical depth information 

•  Larger number and longer time series of ground-
based validation data 

•  More detailed information on resource variability: 
decadal, seasonal, and monthly 

•  More detailed information on level of confidence 

•  More comprehensive prognostics and what-if 
scenarios for CSP, CPV, and Solar Cooling 

INPE 
UFSC 
UNIFESP 
IFSC 
UTFPR 
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http://labren.ccst.inpe.br/  


